Borehole Thermal Energy Storage Systems for Storage of Industrial Excess Heat is popular PDF and ePub book, written by Emil Nilsson in 2020-02-20, it is a fantastic choice for those who relish reading online the Uncategoriezed genre. Let's immerse ourselves in this engaging Uncategoriezed book by exploring the summary and details provided below. Remember, Borehole Thermal Energy Storage Systems for Storage of Industrial Excess Heat can be Read Online from any device for your convenience.

Borehole Thermal Energy Storage Systems for Storage of Industrial Excess Heat Book PDF Summary

Improving industrial energy efficiency is considered an important factor in reducing carbon dioxide emissions and counteract climate change. For many industrial companies in cold climates, heat generated at the site in summer will not be needed to fulfil the site heat demand during this time, and is thus removed to the outdoor air. Although a mismatch between heat generation and heat demand primarily being seasonal, a mismatch may also exist at times in the winter, e.g. during milder winter days or high production hours. If this excess heat instead of being sent to the outdoors was stored for later use when it is needed, purchased energy for the site could be decreased. One way to do this is by the use of a borehole thermal energy storage (BTES) system. A BTES system stores energy directly in the ground by using an array of closely drilled boreholes through which a heat carrier, often water, is circulated. So far, BTES systems used for heating purposes have mainly been used for storage of solar thermal energy. The BTES system has then been part of smaller district solar heating systems to reduce the seasonal mismatch between incoming solar radiation and heat demand, thus increasing system solar fraction. For this application of BTES systems, energy for storage can be controlled by the sizing of the solar collector area. At an industrial site, however, the energy that can be stored will be limited to the excess heat at the site, and the possible presence of several time-varying processes generating heat at different temperatures gives options as to which processes to include in the heat recovery process and how to design the BTES system. Moreover, to determine the available heat for storage at an industrial site, individual measurements of the heat streams to be included are required. Thus, this must be made more site-specific as compared to that of the traditional usage of BTES systems where solar thermal energy is stored, in which case long-time historic solar radiation data to do this is readily accessible for most locations. Furthermore, for performance predictions of industrial BTES systems to be used for both seasonal and short-term storage of energy, models that can treat the short-term effects are needed, as traditional models for predicting BTES performance do not consider this. Although large-scale BTES systems have been around since the 1970’s, little data is to be found in the literature on how design parameters such as borehole spacing and borehole depth affect storage performance, especially for industrial BTES applications. Most studies that can be found with regard to the designing of ground heat exchanger systems are for traditional ground source heat pumps, working at the natural temperature of the ground and being limited to only one or a few boreholes. In this work, the performance of the first and largest industrial BTES system in Sweden was first presented and evaluated with regard to the storage’s first seven years in operation. The BTES system, which has been used for both long- and short-term storage of energy, was then modelled in the IDA ICE 4.8 environment with the aim to model actual storage performance. Finally, the model was used to conduct a parametric study on the BTES system, where e.g. the impact on storage performance from borehole spacing and characteristics of the storage supply flow at heat injection were investigated. From the performance evaluation it could be concluded that lower than estimated quantities and/or quality of the excess heat at the site, resulting in lower storage supply flow temperatures at heat injection, has hindered the storage from reaching temperatures necessary for significant amounts of energy to be extracted. Based on the repeating annual storage behavior seen for the last years of the evaluation period, a long-term annual heat extraction and ratio of energy extracted to energy injected of approximately 400 MWh/year and 20% respectively are likely. For the comparison of predicted and measured storage performance, which considered a period of three years, predicted values for total injected and extracted energy deviated from measured values by less than 1 and 3% respectively, and predicted and measured values for injected and extracted energy followed the same pattern throughout the period. Furthermore, the mean relative difference for the storage temperatures was 4%. A time-step analysis confirmed that the intermittent heat injection and extraction, occurring at intervals down to half a day, had been captured in the three-year validation. This as predictions would become erroneous when the time step exceeded the time at which these changes in storage operation occur. Main findings from the parametric study include that 1) for investigated supply flows at heat injection, a high temperature was more important than a high flow rate in order to achieve high annual heat extractions and that 2) annual heat extraction would rapidly reduce as the borehole spacing was decreased from the one yielding the highest annual heat extraction, whereas the reduction in annual heat extraction was quite slow when the spacing was increased from this point. Another conclusion that came from the performance evaluation and the parametric study, as a consequence of the Emmaboda storage being designed as a high-temperature BTES system, intended working temperatures being 40–55 °C, was that the possibility of designing the BTES system for low working temperatures should be considered in the designing of a BTES system. Lower storage operation temperatures allow for more energy to be injected and in turn for more energy to be extracted and reduces storage heat losses to the surroundings. Ökad energieffektivisering inom industrin anses vara en nyckelkomponent för att minska koldioxidutsläpp och motarbeta klimatförändringar. För många industrier belägna i kallare klimat behövs under sommaren inte all den värme som alstras på anläggningen för att uppnå anläggningens värmebehov, och värmen avlägsnas därför till utomhusluften. Även om ett överskott av värme framförallt existerar under sommaren kan överskottsvärme även uppstå under vintern, till exempel under mildare vinterdagar eller högproduktionstimmar. Om överskottsvärmen istället för att avlägsnas till utomhusluften lagras till senare då den behövs skulle köpt energi till anläggningen kunna minskas. Ett sätt att åstadkomma detta är med hjälp av ett borrhålsvärmelager. Ett borrhålsvärmelager lagrar energi direkt i marken med hjälp av ett flertal närliggande borrhål genom vilka en värmebärare, vanligtvis vatten, cirkuleras. Hittills har borrhålsvärmelager med syfte att leverera värme framförallt använts för lagring av termisk solenergi. Borrhålsvärmelager har då ingått i solvärmesystem för uppvärmning av enstaka bostadskvarter, för att på så vis minska den säsongsbaserade missanpassningen mellan solinstrålning och värmebehov och öka värmesystemets solfraktion. För denna applikation av borrhålsvärmelager kan energimängder för lagring kontrolleras av storleken på solfångarkollektorytan. För industriella borrhålsvärmelagertillämpningar däremot, bestäms energimängder som kan lagras av den tillgängliga överskottsvärmen vid anläggningen. En industri har dessutom vanligtvis ett flertal energianvändande processer, vilka på grund av tidsvarierande drift och olika kvalitet på den alstrade värmen ger upphov till alternativ för vilka processer som bör integreras i värmeåtervinningssystemet och hur själva borrhålsvärmelagret bör utformas. För beräkning av värmemängder tillgängliga för lagring vid en industriell anläggning krävs dessutom mätdata för de individuella värmeströmmar som ska ingå i lagerprocessen, vilket betyder att detta måste genomföras mer fallspecifikt för industriella borrhålsvärmelagertillämpningar än för borrhålsvärmelager för lagring av solenergi, där historisk solinstrålningsdata för beräkning av detta är direkt tillgänglig för de flesta platser. För prediktioner av prestandan av borrhålsvärmelager användandes för både lång- och korttidslagring behövs dessutom modeller som kan hantera effekterna från korttidslagringen, vilket traditionella modeller för borrhålsvärmelagerprediktioner inte gör. Trots att storskaliga borrhålsvärmelager har byggts sedan 1970-talet finns lite data publicerat över hur olika systemparametrar så som borrhålsavstånd och borrhålsdjup påverkar lagerprestandan, särskilt med avseende på industriella borrhålsvärmelagertillämpningar. De flesta studier i litteraturen kopplat till utformning av borrhålsvärmeväxlarsystem avser traditionell bergvärme där värmepumpen arbetar mot marken vid sin naturliga temperatur och enbart ett fåtal borrhål används. I det här arbetet genomfördes först en utvärdering av det första borrhålsvärmelagret för lagring av industriell överskottsvärme i Sverige med avseende på lagrets första sju år i drift. Borrhålsvärmelagret, vilket har använts för både lång- och korttidslagring, modellerades sedan i IDA ICE 4.8 med målet att återskapa lagrets utfall. Slutligen användes den validerade borrhålsvärmelagermodellen för en parameterisering av lagret, där påverkan på inladdad och urladdad energi och borrhålsvärmelagerverkningsgrad från bland annat borrhålsavstånd och temperatur och storlek på flödet till lagret vid laddning studerades. Från uppföljningen av lagrets utfall konstaterades det att lägre än uppskattade mängder överskottsvärme och/eller kvalitet på överskottsvärmen, resulterande i lägre än uppskattade framledningstemperaturer till lagret vid laddning, har hindrat lagret från att nå temperaturer nödvändiga för att väsentliga mängder energi ska kunna hämtas upp från lagret. Baserat på det på årsbasis cykliska beteende noterat för lagret för de sista åren av utvärderingen är rimliga långsiktiga värden för urladdad energi och borrhålsvärmelagerverkningsgrad cirka 400 MWh/år respektive 20%. För jämförelsen mellan predikterad och uppmätt lagerprestanda, vilken avser en period om tre år, avvek predikterade värden för inladdad och urladdad energi från uppmätta värden med mindre än 1% respektive 3%. Värden för predikterad och uppmätt inladdad och urladdad energi följde dessutom varandra väl under de tre åren. Vidare var den genomsnittliga relativa skillnaden för lagertemperaturerna för valideringsperioden 4%. En tidsstegsanalys bekräftade att modellen hade fångat upp effekterna av den intermittenta driften av lagret, inträffande vid intervall ned till halva dygn, då prediktioner blev felaktiga när simuleringstidssteget överskred tiden för vilka ändringar mellan laddning och urladdning av lagret ägt rum. Huvudsakliga resultat från parameterstudien inkluderar att 1) för undersökta flöden till lagret vid laddning var en hög temperatur viktigare än ett stort massflöde för att uppnå en hög årlig urladdning av energi och 2) den mängd energi som på årsbasis kan hämtas upp från lagret sjönk hastigt när borrhålsavståndet minskades från det avstånd som resulterade i att mest energi kunde laddas ur, medan en långsam minskning sågs när borrhålsavståndet ökades från denna punkt. Ytterligare en slutsats kopplat till påverkan på lagerprestanda från ingående systemparametrar är att möjligheter för utformning av ett lågtemperaturlager bör beaktas vid planering av byggande av borrhålsvärmelager. Genom att reducera lagrets arbetstemperatur kan mer energi laddas in i lagret, vilket i sin tur innebär att mer energi kan laddas ur. En lägre arbetstemperatur innebär även lägre värmeförluster från lagret till dess omgivning.

Detail Book of Borehole Thermal Energy Storage Systems for Storage of Industrial Excess Heat PDF

Borehole Thermal Energy  Storage Systems for  Storage of Industrial  Excess Heat
  • Author : Emil Nilsson
  • Release : 20 February 2020
  • Publisher : Linköping University Electronic Press
  • ISBN : 9789179299026
  • Genre : Uncategoriezed
  • Total Page : 48 pages
  • Language : English
  • PDF File Size : 12,5 Mb

If you're still pondering over how to secure a PDF or EPUB version of the book Borehole Thermal Energy Storage Systems for Storage of Industrial Excess Heat by Emil Nilsson, don't worry! All you have to do is click the 'Get Book' buttons below to kick off your Download or Read Online journey. Just a friendly reminder: we don't upload or host the files ourselves.

Get Book

Underground Thermal Energy Storage

Underground Thermal Energy Storage Author : Kun Sang Lee
Publisher : Springer Science & Business Media
File Size : 19,7 Mb
Get Book
Underground thermal energy storage (UTES) provide us with a flexible tool to combat global warming t...

Storing Energy

Storing Energy Author : Trevor Letcher
Publisher : Elsevier
File Size : 46,5 Mb
Get Book
Storing Energy: With Special Reference to Renewable Energy Sources, Second Edition has been fully re...

Advances in Solar Heating and Cooling

Advances in Solar Heating and Cooling Author : Ruzhu Wang,Tianshu Ge
Publisher : Woodhead Publishing
File Size : 15,7 Mb
Get Book
Advances in Solar Heating and Cooling presents new information on the growing concerns about climate...

Heat and cold storage with PCM

Heat and cold storage with PCM Author : Harald Mehling,Luisa F. Cabeza
Publisher : Springer Science & Business Media
File Size : 37,9 Mb
Get Book
The years 2006 and 2007 mark a dramatic change of peoples view regarding c- mate change and energy c...

Solar Energy Utilization

Solar Energy Utilization Author : Hafit Yüncü,E. Paykoc,Y. Yener
Publisher : Springer Science & Business Media
File Size : 27,7 Mb
Get Book
Until very recently, energy supply of the world has been treated as being nearly inexhaustible. Nowa...